Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.624
Filtrar
1.
Ren Fail ; 46(1): 2334396, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38570195

RESUMO

OBJECTIVES: Calcium oxalate (CaOx) crystal deposition in acute kidney injury (AKI) patients is under recognized but impacts renal outcomes. This study investigates its determinants and effects. METHODS: We studied 814 AKI patients with native kidney biopsies from 2011 to 2020, identifying CaOx crystal deposition severity (mild: <5, moderate: 5-10, severe: >10 crystals per section). We assessed factors like urinary oxalate, citrate, urate, electrolytes, pH, tubular calcification index, and SLC26A6 expression, comparing them with creatinine-matched AKI controls without oxalosis. We analyzed how these factors relate to CaOx severity and their impact on renal recovery (eGFR < 15 mL/min/1.73 m2 at 3-month follow-up). RESULTS: CaOx crystal deposition was found in 3.9% of the AKI cohort (32 cases), with 72% due to nephrotoxic medication-induced tubulointerstitial nephritis. Diuretic use, higher urinary oxalate-to-citrate ratio induced by hypocitraturia, and tubular calcification index were significant contributors to moderate and/or severe CaOx deposition. Poor baseline renal function, low urinary chloride, high uric acid and urea nitrogen, tubular SLC26A6 overexpression, and glomerular sclerosis were also associated with moderate-to-severe CaOx deposition. Kidney recovery was delayed, with 43.8%, 31.2%, and 18.8% of patients having eGFR < 15 mL/min/1.73 m2 at 4, 12, and 24-week post-injury. Poor outcomes were linked to high urinary α1-microglobulin-to-creatinine (α1-MG/C) ratios and active tubular injury scores. Univariate analysis showed a strong link between this ratio and poor renal outcomes, independent of oxalosis severity. CONCLUSIONS: In AKI, CaOx deposition is common despite declining GFR. Factors worsening tubular injury, not just oxalate-to-citrate ratios, are key to understanding impaired renal recovery.


Assuntos
Injúria Renal Aguda , Calcinose , Hiperoxalúria , Humanos , Oxalato de Cálcio/química , Creatinina/metabolismo , Rim/patologia , Hiperoxalúria/complicações , Oxalatos/metabolismo , Injúria Renal Aguda/patologia , Citratos/metabolismo , Ácido Cítrico
2.
Sci Adv ; 10(13): eadl3685, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552027

RESUMO

The solute carrier 13 (SLC13) family comprises electrogenic sodium ion-coupled anion cotransporters, segregating into sodium ion-sulfate cotransporters (NaSs) and sodium ion-di- and-tricarboxylate cotransporters (NaDCs). NaS1 and NaDC1 regulate sulfate homeostasis and oxidative metabolism, respectively. NaS1 deficiency affects murine growth and fertility, while NaDC1 affects urinary citrate and calcium nephrolithiasis. Despite their importance, the mechanisms of substrate recognition and transport remain insufficiently characterized. In this study, we determined the cryo-electron microscopy structures of human NaS1, capturing inward-facing and combined inward-facing/outward-facing conformations within a dimer both in apo and sulfate-bound states. In addition, we elucidated NaDC1's outward-facing conformation, encompassing apo, citrate-bound, and N-(p-amylcinnamoyl) anthranilic acid (ACA) inhibitor-bound states. Structural scrutiny illuminates a detailed elevator mechanism driving conformational changes. Notably, the ACA inhibitor unexpectedly binds primarily anchored by transmembrane 2 (TM2), Loop 10, TM11, and TM6a proximate to the cytosolic membrane. Our findings provide crucial insights into SLC13 transport mechanisms, paving the way for future drug design.


Assuntos
Simportadores , Animais , Humanos , Camundongos , Regulação Alostérica , Citratos/metabolismo , Microscopia Crioeletrônica , Sódio/metabolismo , Sulfatos/metabolismo , Simportadores/metabolismo
3.
New Phytol ; 242(3): 1131-1145, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38482565

RESUMO

Plenty of rainfall but unevenly seasonal distribution happens regularly in southern China. Seasonal drought from summer to early autumn leads to citrus fruit acidification, but how seasonal drought regulates citrate accumulation remains unknown. Herein, we employed a set of physiological, biochemical, and molecular approaches to reveal that CsABF3 responds to seasonal drought stress and modulates citrate accumulation in citrus fruits by directly regulating CsAN1 and CsPH8. Here, we demonstrated that irreversible acidification of citrus fruits is caused by drought lasting for > 30 d during the fruit enlargement stage. We investigated the transcriptome characteristics of fruits affected by drought and corroborated the pivotal roles of a bHLH transcription factor (CsAN1) and a P3A-ATPase gene (CsPH8) in regulating citrate accumulation in response to drought. Abscisic acid (ABA)-responsive element binding factor 3 (CsABF3) was upregulated by drought in an ABA-dependent manner. CsABF3 activated CsAN1 and CsPH8 expression by directly and specifically binding to the ABA-responsive elements (ABREs) in the promoters and positively regulated citrate accumulation. Taken together, this study sheds new light on the regulatory module ABA-CsABF3-CsAN1-CsPH8 responsible for citrate accumulation under drought stress, which advances our understanding of quality formation of citrus fruit.


Assuntos
Citrus , Citrus/genética , Citrus/metabolismo , Ácido Cítrico/metabolismo , Secas , Estações do Ano , Citratos/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Frutas/genética , Frutas/metabolismo
4.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339147

RESUMO

Differently from higher eukaryotic cells, in the yeast Saccharomyces cerevisiae there are two mitochondrial carrier proteins involved in the transport of citrate: Ctp1 and Yhm2. Very little is known about the physiological role of these proteins. Wild-type and mutant yeast strains deleted in CTP1 and YHM2 were grown in media supplemented with a fermentable (glucose) or a nonfermentable (ethanol) carbon source. To assess changes in Ctp1 and Yhm2 mRNA expression levels, real-time PCR was performed after total RNA extraction. In the wild-type strain, the metabolic switch from the exponential to the stationary phase is associated with an increase in the expression level of the two citrate transporters. In addition, the results obtained in the mutant strains suggest that the presence of a single citrate transporter can partially compensate for the absence of the other. Ctp1 and Yhm2 differently contribute to fermentative and respiratory metabolism. Moreover, the two mitochondrial carriers represent a link between the Krebs cycle and the glyoxylate cycle, which play a key role in the metabolic adaptation strategies of S. cerevisiae.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citratos/metabolismo , Ácido Cítrico/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Am J Bot ; 111(2): e16285, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38353923

RESUMO

PREMISE: Plants grown at high densities show increased tolerance to heavy metals for reasons that are not clear. A potential explanation is the release of citrate by plant roots, which binds metals and prevents uptake. Thus, pooled exudates at high plant densities might increase tolerance. We tested this exclusion facilitation hypothesis using mutants of Arabidopsis thaliana defective in citrate exudation. METHODS: Wild type Arabidopsis and two allelic mutants for the Ferric Reductase Defective 3 (FRD3) gene were grown at four densities and watered with copper sulfate at four concentrations. Plants were harvested before bolting and dried. Shoot biomass was measured, and shoot material and soil were digested in nitric acid. Copper contents were determined by atomic absorption. RESULTS: In the highest-copper treatment, density-dependent reduction in toxicity was observed in the wild type but not in FRD3 mutants. For both mutants, copper concentrations per gram biomass were up to seven times higher than for wild type plants, depending on density and copper treatment. In all genotypes, total copper accumulation was greater at higher plant densities. Plant size variation increased with density and copper treatment because of heterogeneous distribution of copper throughout the soil. CONCLUSIONS: These results support the hypothesis that citrate exudation is responsible for density-dependent reductions in toxicity of metals. Density-dependent copper uptake and growth in contaminated soils underscores the importance of density in ecotoxicological testing. In soils with a heterogeneous distribution of contaminants, competition for nontoxic soil regions may drive size hierarchies and determine competitive outcomes.


Assuntos
Arabidopsis , Poluentes do Solo , Cobre/toxicidade , Cobre/análise , Cobre/metabolismo , Solo , Plantas/metabolismo , Citratos/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Raízes de Plantas , Biodegradação Ambiental
6.
Am J Physiol Endocrinol Metab ; 326(3): E382-E397, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294699

RESUMO

The hypothalamus is a key integrating center that is involved in the initiation of the corticosteroid stress response, and in regulating nutrient homeostasis. Although cortisol, the principal glucocorticoid in humans and teleosts, plays a central role in feeding regulation, the mechanisms are far from clear. We tested the hypothesis that the metabolic changes to cortisol exposure signal an energy excess in the hypothalamus, leading to feeding suppression during stress in fish. Rainbow trout (Oncorhynchus mykiss) were administered a slow-release cortisol implant for 3 days, and the metabolite profiles in the plasma, hypothalamus, and the rest of the brain were assessed. Also, U-13C-glucose was injected into the hypothalamus by intracerebroventricular (ICV) route, and the metabolic fate of this energy substrate was followed in the brain regions by metabolomics. Chronic cortisol treatment reduced feed intake, and this corresponded with a downregulation of the orexigenic gene agrp, and an upregulation of the anorexigenic gene cart in the hypothalamus. The U-13C-glucose-mediated metabolite profiling indicated an enhancement of glycolytic flux and tricarboxylic acid intermediates in the rest of the brain compared with the hypothalamus. There was no effect of cortisol treatment on the phosphorylation status of AMPK or mechanistic target of rapamycin in the brain, whereas several endogenous metabolites, including leucine, citrate, and lactate were enriched in the hypothalamus, suggesting a tissue-specific metabolic shift in response to cortisol stimulation. Altogether, our results suggest that the hypothalamus-specific enrichment of leucine and the metabolic fate of this amino acid, including the generation of lipid intermediates, contribute to cortisol-mediated feeding suppression in fish.NEW & NOTEWORTHY Elevated cortisol levels during stress suppress feed intake in animals. We tested whether the feed suppression is associated with cortisol-mediated alteration in hypothalamus metabolism. The brain metabolome revealed a hypothalamus-specific metabolite profile suggesting nutrient excess. Specifically, we noted the enrichment of leucine and citrate in the hypothalamus, and the upregulation of pathways involved in leucine metabolism and fatty acid synthesis. This cortisol-mediated energy substrate repartitioning may modulate the feeding/satiety centers leading to the feeding suppression.


Assuntos
Oncorhynchus mykiss , Animais , Humanos , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Hidrocortisona/metabolismo , Leucina/metabolismo , Hipotálamo/metabolismo , Encéfalo/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Citratos/metabolismo , Citratos/farmacologia
7.
Toxicol Lett ; 393: 33-46, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232781

RESUMO

Stone wool fiber materials are commonly used for thermal and acoustic insulation, horticulture and filler purposes. Biosolubility of the stone wool fiber (SWF) materials accessed through acellular in vitro dissolution tests can potentially be used in future as an indicator of fiber biopersistence in vivo. To correlate acellular in vitro studies with in vivo and epidemiological investigations, not only a robust dissolution procedure is needed, but fundamental understanding of fiber behavior during sample preparation and dissolution is required. We investigated the influence of heat treatment procedure for binder removal on the SWF iron oxidation state as well as on the SWF dissolution behavior in simulant lung fluids (with and without complexing agents). We used heat treatments at 450 °C for 5 min and 590 °C for 1 h. Both procedures resulted in complete binder removal from the SWF. Changes of iron oxidation state were moderate if binder was removed at 450 °C for 5 min, and there were no substantial changes of SWF's dissolution behavior in all investigated fluids after this heat treatment. In contrast, if binder was removed at 590 °C for 1 h, complete Fe(II) oxidation to Fe(III) was observed and significant increase of dissolution was shown in fluids without complexing agent (citrate). PHREEQC solution speciation modeling showed that in this case, released Fe(III) may form ferrihydrite precipitate in the solution. Precipitation of ferrihydrite solid phase leads to removal of iron cations from the solution, thus shifting reaction towards the dissolution products and increasing total mass loss of fiber samples. This effect is not observed for heat treated fibers if citrate is present in the fluid, because Fe(III) binds with citrate and remains mobile in the solution. Therefore, for developing the most accurate SWF in vitro acellular biosolubility test, SWF heat treatment for binder removal is not recommended in combination with dissolution testing in fluids without citrate as a complexing agent.


Assuntos
Compostos Férricos , Ferro , Animais , Ferro/metabolismo , Temperatura Alta , Fibra de Lã , Citratos/metabolismo , Citratos/farmacologia , Ácido Cítrico/metabolismo , Ácido Cítrico/farmacologia , Pulmão
8.
mBio ; 15(2): e0127823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38259061

RESUMO

Cross-feeding of metabolites between subpopulations can affect cell phenotypes and population-level behaviors. In chronic Pseudomonas aeruginosa lung infections, subpopulations with loss-of-function (LOF) mutations in the lasR gene are common. LasR, a transcription factor often described for its role in virulence factor expression, also impacts metabolism, which, in turn, affects interactions between LasR+ and LasR- genotypes. Prior transcriptomic analyses suggested that citrate, a metabolite secreted by many cell types, induces virulence factor production when both genotypes are together. An unbiased analysis of the intracellular metabolome revealed broad differences including higher levels of citrate in lasR LOF mutants. Citrate consumption by LasR- strains required the CbrAB two-component system, which relieves carbon catabolite repression and is elevated in lasR LOF mutants. Within mixed communities, the citrate-responsive two-component system TctED and its gene targets OpdH (porin) and TctABC (citrate transporter) that are predicted to be under catabolite repression control were induced and required for enhanced RhlR/I-dependent signaling, pyocyanin production, and fitness of LasR- strains. Citrate uptake by LasR- strains markedly increased pyocyanin production in co-culture with Staphylococcus aureus, which also secretes citrate and frequently co-infects with P. aeruginosa. This citrate-induced restoration of virulence factor production by LasR- strains in communities with diverse species or genotypes may offer an explanation for the contrast observed between the markedly deficient virulence factor production of LasR- strains in monocultures and their association with the most severe forms of cystic fibrosis lung infections. These studies highlight the impact of secreted metabolites in mixed microbial communities.IMPORTANCECross-feeding of metabolites can change community composition, structure, and function. Here, we unravel a cross-feeding mechanism between frequently co-observed isolate genotypes in chronic Pseudomonas aeruginosa lung infections. We illustrate an example of how clonally derived diversity in a microbial communication system enables intra- and inter-species cross-feeding. Citrate, a metabolite released by many cells including P. aeruginosa and Staphylococcus aureus, was differentially consumed between genotypes. Since these two pathogens frequently co-occur in the most severe cystic fibrosis lung infections, the cross-feeding-induced virulence factor expression and fitness described here between diverse genotypes exemplify how co-occurrence can facilitate the development of worse disease outcomes.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Pseudomonas aeruginosa/metabolismo , Transativadores/genética , Transativadores/metabolismo , Percepção de Quorum/genética , Fibrose Cística/complicações , Piocianina , Ácido Cítrico/metabolismo , Fatores de Virulência/metabolismo , Citratos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
9.
Plant Biotechnol J ; 22(1): 181-199, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37776153

RESUMO

Aluminium (Al) toxicity decreases crop production in acid soils in general, but many crops have evolved complex mechanisms to resist it. However, our current understanding of how plants cope with Al stress and perform Al resistance is still at the initial stage. In this study, the citrate transporter CcMATE35 was identified to be involved in Al stress response. The release of citrate was increased substantially in CcMATE35 over-expression (OE) lines under Al stress, indicating enhanced Al resistance. It was demonstrated that transcription factor CcNFYB3 regulated the expression of CcMATE35, promoting the release of citrate from roots to increase Al resistance in pigeon pea. We also found that a Long noncoding RNA Targeting Citrate Synthase (CcLTCS) is involved in Al resistance in pigeon pea. Compared with controls, overexpression of CcLTCS elevated the expression level of the Citrate Synthase gene (CcCS), leading to increases in root citrate level and citrate release, which forms another module to regulate Al resistance in pigeon pea. Simultaneous overexpression of CcNFYB3 and CcLTCS further increased Al resistance. Taken together, these findings suggest that the two modules, CcNFYB3-CcMATE35 and CcLTCS-CcCS, jointly regulate the efflux and synthesis of citrate and may play an important role in enhancing the resistance of pigeon pea under Al stress.


Assuntos
Cajanus , RNA Longo não Codificante , Ácido Cítrico/metabolismo , Cajanus/genética , Alumínio/toxicidade , Alumínio/metabolismo , Citrato (si)-Sintase , Citratos/metabolismo
10.
J Fish Dis ; 47(2): e13892, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38014615

RESUMO

The giant freshwater prawn holds a significant position as a valuable crustacean species cultivated in the aquaculture industry, particularly well-known and demanded among the Southeast Asian countries. Aquaculture production of this species has been impacted by Macrobrachium rosenbergii nodavirus (MrNV) infection, which particularly affects the larvae and post-larvae stages of the prawn. The infection has been recorded to cause mortality rates of up to 100% among the affected prawns. A simple, fast, and easy to deploy on-site detection or diagnostic method is crucial for early detection of MrNV to control the disease outbreak. In the present study, novel single-stranded DNA aptamers targeting the MrNV capsid protein were identified using the systematic evolution of ligands by exponential enrichment (SELEX) approach. The aptamer was then conjugated with the citrate-capped gold nanoparticles (AuNPs), and the sensitivity of this AuNP-based aptasensor for the detection of MrNV capsid protein was evaluated. Findings revealed that the aptamer candidate, APT-MrNV-CP-1 was enriched throughout the SELEX cycle 4, 9, and 12 with the sequence percentage of 1.76%, 9.09%, and 12.42%, respectively. The conjugation of APT-MrNV-CP-1 with citrate-capped AuNPs exhibited the highest sensitivity in detecting the MrNV capsid protein, where the presence of 62.5 nM of the viral capsid protein led to a significant agglomeration of the AuNPs. This study demonstrated the practicality of an AuNP-based aptasensor for disease diagnosis, particularly for detecting MrNV infection in giant freshwater prawns.


Assuntos
Doenças dos Peixes , Nanopartículas Metálicas , Nodaviridae , Palaemonidae , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Palaemonidae/genética , Proteínas Virais/genética , Ouro , DNA de Cadeia Simples , Doenças dos Peixes/diagnóstico , Nodaviridae/genética , Citratos/metabolismo
11.
Biometals ; 37(2): 507-517, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38133869

RESUMO

Siderophores are small-molecule iron chelators produced by many microorganisms that capture and uptake iron from the natural environment and host. Their biosynthesis in microorganisms is generally performed using non-ribosomal peptide synthetase (NRPS) or NRPS-independent siderophore (NIS) enzymes. Vibrio parahaemolyticus secretes its cognate siderophore vibrioferrin under iron-starvation conditions. Vibrioferrin is a dehydrated condensate composed of α-ketoglutarate, L-alanine, aminoethanol, and citrate, and pvsA (the gene encoding the ATP-grasp enzyme), pvsB (the gene encoding the NIS enzyme), pvsD (the gene encoding the NIS enzyme), and pvsE (the gene encoding decarboxylase) are engaged in its biosynthesis. Here, we elucidated the biosynthetic pathway of vibrioferrin through in vitro enzymatic reactions using recombinant PvsA, PvsB, PvsD, and PvsE proteins. We also found that PvsD condenses L-serine and citrate to generate O-citrylserine, and that PvsE decarboxylates O-citrylserine to form O-citrylaminoethanol. In addition, we showed that O-citrylaminoethanol is converted to alanyl-O-citrylaminoethanol by amidification with L-Ala by PvsA and that alanyl-O-citrylaminoethanol is then converted to vibrioferrin by amidification with α-ketoglutarate by PvsB.


Assuntos
Pirrolidinonas , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/química , Vibrio parahaemolyticus/metabolismo , Vias Biossintéticas , Ácidos Cetoglutáricos/metabolismo , Ferro/metabolismo , Sideróforos/química , Citratos/metabolismo
12.
Plant Sci ; 339: 111957, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38122834

RESUMO

Betula platyphylla Suk (birch) is an excellent short-term hardwood species with growth and wood characteristics well suited to wood industries. To investigate the molecular mechanism of wood development in birch, a tension wood (TW) induced system was used to explore the regulatory mechanism at the protein level and identify the key proteins involved in xylem development in birch. The results of dyeing with Safranin O-Fast Green indicated that the cellulose content of TW was significantly higher than that of opposite wood (OW) or normal wood (NW), and the lignin content in TW was significantly lower than that in OW and NW after artificial bending of birch stems. Protein profile analysis of TW, NW and OW by iTRAQ revealed that there were 639 and 460 differentially expressed proteins (DEPs) between TW/OW and TW/NW, respectively. The DEPs were mainly enriched in tyrosine metabolism, glycolysis/gluconeogenesis, phenylalanine and tyrosine metabolism, phenylpropanoid and pyruvate metabolism, the pentose phosphate pathway, the citrate cycle (TCA cycle), fructose and mannose metabolism, carbon fixation in photosynthetic organisms, fatty acid biosynthesis, photosynthesis proteins and other pathways. The proteins in the citrate cycle were upregulated. The expression levels of PGI, PGM and FRK proteins related to cellulose synthesis increased and the expression levels of PAL, 4CL and COMT related to lignin synthesis decreased, leading to an increase in cellulose content and decreased lignin levels in TW. PPI analysis revealed that key DEPs interact with each other, indicating that these proteins form complexes to implement this function, which may provide important insights for wood formation at the molecular level.


Assuntos
Lignina , Madeira , Lignina/metabolismo , Celulose/metabolismo , Betula , Citratos/metabolismo , Tirosina/metabolismo
13.
Plant Physiol Biochem ; 205: 108197, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37995579

RESUMO

Aluminum (Al) toxicity is a major factor limiting crop yields in acid soils. Sweet sorghum (Sorghum bicolor L.) is a high-efficient energy crop widely grown in tropical and subtropical regions of the world, where acid soil is common and Al toxicity is widespread. Here, we characterized a transcription factor SbHY5 in sweet sorghum, which mediated light to promote plant Al stress adaptation. The expression of SbHY5 was induced by Al stress and increasing light intensity. The overexpression of SbHY5 improved Al tolerance in transgenic plants, which was associated with increased citrate secretion and reduced Al content in roots. Meanwhile, SbHY5 was found to localize to the nucleus and displayed transcriptional activity. SbHY5 directly activated the expression of SbMATE, indicating that a HY5-MATE-dependent citrate secretion pathway is involved in Al tolerance in plants. SbSTOP1 was reported as a key transcription factor, regulating several Al tolerance genes. Here, inspiringly, we found that SbHY5 directly promoted the transcription of SbSTOP1, implying the existence of HY5-STOP1-Al tolerance genes-mediated regulatory pathways. Besides, SbHY5 positively regulated its own transcription. Our findings revealed a novel regulatory network in which a light signaling factor, SbHY5, confers Al tolerance in plants by modulating the expression of Al stress response genes.


Assuntos
Alumínio , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Regulação da Expressão Gênica de Plantas , Citratos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
J Genet ; 1022023.
Artigo em Inglês | MEDLINE | ID: mdl-37850386

RESUMO

The formate dehydrogenase (FDH) is regarded as a universal stress protein involved in various plant abiotic stress responses. This study aims to ascertain GmFDH function in conferring tolerance to aluminum (Al) stress. The bioinformatics analysis demonstrates that GmFDH from Tamba black soybean (TBS) encodes FDH. Quantitative reverse transcription-PCR (qRT-PCR) showed that GmFDH expression was induced by Al stress with a concentration-time-specific pattern. Moreover, Al stress promotes formate content and activates FDH activity. Further studies revealed that GmFDH overexpression alleviated root growth of tobacco under Al stress inhibition and reduced Al and ROS accumulation in roots. In addition, transgenic tobacco had much more root citrate exudation and much higher activity of antioxidant enzymes than wild type. Moreover, under Al stress, NtMATE and NtALS3 expression showed no changes in wild type and overexpression lines, suggesting that here the known Al-resistant mechanisms are not involved. However citrate synthase activity is higher in transgenic tobaccos than that of wild type, which might be the reason for citrate secretion increase. Thus, the increased Al tolerance of GmFDH overexpression lines is likely attributable to enhanced activities of antioxidant enzymes and promoting citrate secretion. Taken together, our findings advance understanding of higher plant Al toxicity mechanisms and suggest a possible new route towards the improvement of plant growth under Al stress.


Assuntos
Alumínio , /genética , Alumínio/toxicidade , Alumínio/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Antioxidantes , Plantas Geneticamente Modificadas , Citratos/metabolismo , Raízes de Plantas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Xenobiotica ; 53(6-7): 498-506, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846493

RESUMO

When NA808, a potent HCV replication inhibitor, was intravenously administered to rats, it was distributed to the liver. The AUC ratio in the liver of 20 mg/kg to 2 mg/kg was greater than the dose ratio, whereas exposure in plasma was increased in a dose-proportional manner. Saturation of biliary excretion was also shown at 20 mg/kg.NA808 was revealed to be a substrate for both OATP1B and MRP2 transporters by an in vitro study using OATP1B1-MRP2 expressing cells. [14C]NA808 was taken up into the cells by OATP1B1 and excreted from cells by MRP2 efficiently (Papp ratio: 24.2-70.2). The Papp ratio decreased with increasing NA808 concentration.PBPK modelling was constructed to display the blood and liver concentration time profile and biliary excretion of NA808. This model analysis was able to reproduce the pharmacokinetics in rats; the degree of increase in the liver exposure from 2 to 20 mg/kg was more than dose-proportional and was greater than the increase in the blood exposure due to saturation of efflux transporters.In drug development, to avoid unexpected toxicity in tissues, it is important to consider the potential for tissue non-linearity with linear plasma exposure based on pre-clinical data and PBPK modelling.


Assuntos
Citratos , Fígado , Ratos , Animais , Fígado/metabolismo , Citratos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico
16.
Physiol Plant ; 175(5): e14024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882315

RESUMO

Plant roots are exposed to hypoxia in waterlogged soils, and they are further challenged by specific phytotoxins produced by microorganisms in such conditions. One such toxin is hexanoic acid (HxA), which, at toxic levels, causes a strong decline in root O2 consumption. However, the mechanism underlying this process is still unknown. We treated pea (Pisum sativum L.) roots with 20 mM HxA at pH 5.0 and 6.0 for a short time (1 h) and measured leakage of key electrolytes such as metal cations, malate, citrate and nonstructural carbohydrates (NSC). After treatment, mitochondria were isolated to assess their functionality evaluated as electrical potential and O2 consumption rate. HxA treatment resulted in root tissue extrusion of K+ , malate, citrate and NSC, but only the leakage of the organic acids and NSC increased at pH 5.0, concomitantly with the inhibition of O2 consumption. The activity of mitochondria isolated from treated roots was almost unaffected, showing just a slight decrease in oxygen consumption after treatment at pH 5.0. Similar results were obtained by treating the pea roots with another organic acid with a short carbon chain, that is, butyric acid. Based on these results, we propose a model in which HxA, in its undissociated form prevalent at acidic pH, stimulates the efflux of citrate, malate and NSC, which would, in turn, cause starvation of mitochondrial respiratory substrates of the Krebs cycle and a consequent decline in O2 consumption. Cation extrusion would be a compensatory mechanism in order to restore plasma membrane potential.


Assuntos
Ciclo do Ácido Cítrico , /metabolismo , Malatos/metabolismo , Caproatos/metabolismo , Citratos/metabolismo , Ácido Cítrico/metabolismo , Compostos Orgânicos , Raízes de Plantas/metabolismo
17.
Int J Food Microbiol ; 407: 110398, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-37714070

RESUMO

In the manufacture of rennet-coagulated cheese, autolysis is a rate-limiting step for ripening. Previously, a highly autolytic and thermotolerant Lactococcus lactis strain, RD07, was generated, which in preliminary laboratory cheese trials demonstrated great potential as a cheese ripening accelerant. RD07 is proteinase positive (Prt+) and capable of metabolizing citrate (Cit+). In this study, we obtained two derivatives of RD07: EC8 lacking the citrate plasmid, and EC2 lacking the proteinase plasmid. EC2 and EC8 retained the autolytic properties of RD07, and autolyzed 20 times faster than Flora Danica (FD) and SD96, where the latter is the parent of RD07. The three strains EC2, EC8 and RD07 were used in a ratio of 90:8:2, to create a simple starter termed ERC. ERC was less sensitive to cooking when cultured in milk and autolyzed well after entering the stationary phase upon facing sugar starvation. The ERC starter was benchmarked against FD and SD96 in laboratory cheese trials. The free amino acid content in cheese prepared using the ERC culture was 31 % and 34 % higher than in cheese prepared using FD and SD96, respectively. Overall, the ERC culture resulted in a more rapid release of free amino acids. A large-scale (5000 L) Gouda cheese trial at a Danish dairy demonstrated that the single strain ERC starter was comparable in performance to FD + an adjunct Lactobacillus helveticus culture. Furthermore, a large-scale Danbo cheese trial demonstrated that ERC could reduce the ripening period by 50 % for long-term ripened (25 weeks) cheese, resulting in better cheese.


Assuntos
Queijo , Lactococcus lactis , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Peptídeo Hidrolases/metabolismo , Citratos/metabolismo
18.
Drug Metab Dispos ; 51(12): 1628-1641, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37684055

RESUMO

The hepatic SLC13A5/SLC25A1-ATP-dependent citrate lyase (ACLY) signaling pathway, responsible for maintaining the citrate homeostasis, plays a crucial role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Bempedoic acid (BA), an ACLY inhibitor commonly used for managing hypercholesterolemia, has shown promising results in addressing hepatic steatosis. This study aimed to elucidate the intricate relationships in processes of hepatic lipogenesis among SLC13A5, SLC25A1, and ACLY and to examine the therapeutic potential of BA in NAFLD, providing insights into its underlying mechanism. In murine primary hepatocytes and HepG2 cells, the silencing or pharmacological inhibition of SLC25A1/ACLY resulted in significant upregulation of SLC13A5 transcription and activity. This increase in SLC13A5 activity subsequently led to enhanced lipogenesis, indicating a compensatory role of SLC13A5 when the SLC25A1/ACLY pathway was inhibited. However, BA effectively counteracted this upregulation, reduced lipid accumulation, and ameliorated various biomarkers of NAFLD. The disease-modifying effects of BA were further confirmed in NAFLD mice. Mechanistic investigations revealed that BA could reverse the elevated transcription levels of SLC13A5 and ACLY, and the subsequent lipogenesis induced by PXR activation in vitro and in vivo. Importantly, this effect was diminished when PXR was knocked down, suggesting the involvement of the hepatic PXR-SLC13A5/ACLY signaling axis in the mechanism of BA action. In conclusion, SLC13A5-mediated extracellular citrate influx emerges as an alternative pathway to SLC25A1/ACLY in the regulation of lipogenesis in hepatocytes, BA exhibits therapeutic potential in NAFLD by suppressing the hepatic PXR-SLC13A5/ACLY signaling axis, while PXR, a key regulator in drug metabolism may be involved in the pathogenesis of NAFLD. SIGNIFICANCE STATEMENT: This work describes that bempedoic acid, an ATP-dependent citrate lyase (ACLY) inhibitor, ameliorates hepatic lipid accumulation and various hallmarks of non-alcoholic fatty liver disease. Suppression of hepatic SLC25A1-ACLY pathway upregulates SLC13A5 transcription, which in turn activates extracellular citrate influx and the subsequent DNL. Whereas in hepatocytes or the liver tissue challenged with high energy intake, bempedoic acid reverses compensatory activation of SLC13A5 via modulating the hepatic PXR-SLC13A5/ACLY axis, thereby simultaneously downregulating SLC13A5 and ACLY.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Fígado/metabolismo , Ácidos Graxos/metabolismo , Transdução de Sinais , Citratos/metabolismo , Ácido Cítrico/metabolismo
19.
J Biochem Mol Toxicol ; 37(12): e23495, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37577756

RESUMO

This work was conducted to synthesize whey protein nanoparticles (WPNPs) for the coating of zinc citrate (Zn CITR) at three levels and to study their protective role against CCl4 -induced kidney damage and inflammatory gene expression disorder in rats. Seventy male Sprague-Dawley rats were divided into seven groups and treated orally for 4 weeks as follows; the control group, the group treated twice a week with CCl4 (5 mL/kg b.w), the groups received CCl4 plus WPNPs (300 mg/kg b.w); the group received 50 mg/kg b.w of Zn CITR or the three formulas of Zn CITR-WPNPs at low, medium and high doses (LD, MD, and HD). Blood and kidney samples were collected for different assays and histological analyses. The fabricated particles were semispherical, with an average size of 160 ± 2.7, 180 ± 3.1, and 200 ± 2.6 nm and ζ potential of -126, -93, and -84 mV for ZN CITR-WPNPs (LD), Zn CITR-WPNPs (MD), and ZN CITR-WPNPs (HD), respectively. CCl4 significantly increased (p ≤ 0.05) kidney function indices, oxidative stress markers, messenger RNA expression of transforming growth factor-ß1, interleukin (IL)-1ß, IL-10, IL-6, inducible nitric oxide synthase, and tumor necrosis factor-α and significantly decreased (p ≤ 0.05) renal superoxide dismutase, catalase, and glutathione peroxidase along with the histological changes in the kidney tissues. WPNPs, Zn CITR, and Zn CITR loaded WPNPS showed a protective effect against these complications and Zn CITR-WPNPs (LD) was more effective. WPNPs can be used effectively for coating Zn CITR at a level of 7 mg/g WPNPs to be used as a supplement for the protection of the kidney against different toxicants to enhance immunity and avoid harm of excess Zn.


Assuntos
Nefropatias , Nanopartículas , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Proteínas do Soro do Leite/farmacologia , Proteínas do Soro do Leite/metabolismo , Proteínas do Soro do Leite/uso terapêutico , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Nefropatias/tratamento farmacológico , Antioxidantes/farmacologia , Estresse Oxidativo , Rim , Citratos/metabolismo , Citratos/farmacologia , Citratos/uso terapêutico , Expressão Gênica , Zinco/metabolismo
20.
Cell Rep ; 42(8): 112971, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37578864

RESUMO

Fatty acid synthase (FASN) maintains de novo lipogenesis (DNL) to support rapid growth in most proliferating cancer cells. Lipogenic acetyl-coenzyme A (CoA) is primarily produced from carbohydrates but can arise from glutamine-dependent reductive carboxylation. Here, we show that reductive carboxylation also occurs in the absence of DNL. In FASN-deficient cells, reductive carboxylation is mainly catalyzed by isocitrate dehydrogenase-1 (IDH1), but IDH1-generated cytosolic citrate is not utilized for supplying DNL. Metabolic flux analysis (MFA) shows that FASN deficiency induces a net cytosol-to-mitochondria citrate flux through mitochondrial citrate transport protein (CTP). Previously, a similar pathway has been shown to mitigate detachment-induced oxidative stress in anchorage-independent tumor spheroids. We further report that tumor spheroids show reduced FASN activity and that FASN-deficient cells acquire resistance to oxidative stress in a CTP- and IDH1-dependent manner. Collectively, these data indicate that by inducing a cytosol-to-mitochondria citrate flux, anchorage-independent malignant cells can gain redox capacity by trading off FASN-supported rapid growth.


Assuntos
Ácido Cítrico , Isocitrato Desidrogenase , Ácido Cítrico/metabolismo , Citosol/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Citratos/metabolismo , Estresse Oxidativo , Óxido Nítrico Sintase/metabolismo , Ácido Graxo Sintases/metabolismo , Mitocôndrias/metabolismo , Lipogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...